
INF5410: Signal Processing in Space and Time

Mandatory Exercise 2

Spring semester 2010

Part A: High Resolution Beamforming

• This mandatory exercise is based on the examples shown in figures 4b and 5 in the
paper: H. Krim, M. Viberg, “Two decades of array signal processing research – The
parametric approach,” IEEE Signal Processing Magazine, pp. 67–94, July 1996. A
link to the IEEEXplore download site may be found at the “Syllabus/achievement
requirements” page of INF5410.

• Problem 1–5, and 7 are mandatory.

• All other problems are mandatory for PhD students, but voluntary for other stu-
dents.

• The subject is on estimation of the spatial spectrum for an M = 10 element uniform
linear array with half-wavelength spacing. The input consists of two incoherent
signals at 0 and −10 degrees in additive spatially white noise. The signal to noise
ratio for both sources is 0 dB, and N = 100 samples are available of the input.
The signal and noise model is described on page 73 of the paper.

• The Matlab code for the generation of the input is found at:
http://www.ifi.uio.no/~inf5410/2005V/proj2b.m

1) Estimate the spatial correlation matrix. Estimate and plot the spatial correlation
as a function of lags 0 to M − 1.

2) Estimate the spatial spectrum using the conventional method (Figure 4b). Discuss
why the sources are not separated.

3) Estimate the spatial spectrum for the same signal using the minimum variance
beamformer (Capon’s beamformer) (Figure 5). Discuss the differences from the
conventional beamformer.

4) Plot the distribution of the eigenvalues of the correlation matrix and explain it on
the basis of the signal and noise model.

1

http://www.ifi.uio.no/~inf5410/2005V/proj2b.m

5) Estimate the spectrum using the MUSIC algorithm (figure 5) assuming that the
number of signals is known. Discuss the differences from the previous estimates.

6) Estimate the spatial spectrum by the eigenvector method (Johnson & Dudgeon eq.
7.8a). Discuss the differences from the MUSIC beamformer.

7) Incorrect estimate of the number of sources

Estimate the spatial spectrum with the MUSIC method (and eigenvector method)
when the number of signals is incorrectly estimated. Let the estimate of the num-
ber of signals be 0, 1, and 3. Discuss the differences between the estimates for
the various cases. (Which spatial spectrum estimator is the eigenvector method
equivalent to when 0 signals are assumed to be present?)

8) Sparse array and adaptive beamforming

Analyze the best and the worst 6 element symmetrical thinned arrays that were
found in mandatory exercise 1, in the same signal scenario. Compute the Co-arrays.
Estimate the spatial correlation matrix and spatial spectrums using conventional
and adaptive beamformers. Discuss the results.

9) Coherent sources

Modify the signal generator so that it generates coherent signals instead. Find
the properties of the previous beamformers for coherent signals (You may have to
change the angles of incidence also). Implement the various forms of averaging of
the correlation estimate and see if this gives the methods a better ability to handle
coherence.

Part B: Beamforming of data from a microphone array

Background information for Part B

Here you get access to a set of data that were recorded by an array of microphones. The
data and the helper-functions you need may be downloaded from this location:

http://www.uio.no/studier/emner/matnat/ifi/INF5410/v10/squarehead_oblig_data/secret_sound_exercise.zip

You are provided with the following information about the experimental situation:

• The array of microphones was manufactured by Squarehead Technology for con-
ference use. See http://www.squarehead.no/Conference.html for a system de-
scription.

• There are 3 sound sources in the room. You are provided with a data file with the
received time-signals on each microphone.

• The data, as well as information about the array element coordinates are stored in
the file secret_sound.mat. After loading this into the Matlab memory
[load(’secret_sound.mat’)], you may list the variables it contains:

2

http://www.uio.no/studier/emner/matnat/ifi/INF5410/v10/squarehead_oblig_data/secret_sound_exercise.zip
http://www.squarehead.no/Conference.html

>> whos

Name Size Bytes Class Attributes

Xcoord 275x1 2200 double

Ycoord 275x1 2200 double

data 275x88201 97021100 single

fs 1x1 8 double

– In order to get the position ~xm = (xm, ym, zm) of each element m in meters,
you use the variables Xcoord, Ycoord, Zcoord.

– The sampling frequency fs is stored in Hz in the variable fs.

– Each row m of the matrix data consists of the sound that was recorded by
microphone m.

• You may assume the speed of sound to be 340 m/s.

• To let Matlab output sound from microphone #1 to the loudspeaker, using the
sampling frequency fs, type sound(double(data(1,:)), fs). Make sure that
the output data is normalized so that the amplitude stays within A ∈ [−1, 1]. The
conversion from single-precision to double-precision using double must be applied
since sound doesn’t accept single-precision input.

Exercises for Part B

1) The array geometry

• Plot the array element positions. Use the command axis equal; axis tight

in order to adjust the x and y scales.

• How do the array elements seem to be arranged?

• For a frequency of f = 3 kHz, the sources may mainly be considered to
be the near-field of the array aperture. Motivate this by calculation of the
approximate far-field limit.

2) Sound from a single channel

• Play the sound from channel #1 by use of the Matlab command sound. This
command works only on double type variables, so before playing the variable
foo, convert it from single-precision into double-precision by applying the
command sound(double(foo), fs).

• Describe briefly what you hear.

3) Straightforward channel summation without beam steering

• Sum the signals of all elements without adding any element steering delays.
Play the resulting sound by use of sound. Remember to normalize the sum
signal to make sure the amplitude of the output signal to the loudspeaker is
be within the interval A ∈ [−1, 1].

3

• May you hear any difference compared to your experience in 2)?

4) Delay-and-sum beamformer implementation

Remember that focusing in the near-field (focusing for spherical waves) towards
the position ~x may be done by application of the element delays

∆m =
r◦ − r◦m

c
, (1)

where r◦ , |~x◦| is the distance from the origin to the source assumed to be located
the position ~x◦ = (x◦, y◦, z◦) that we steer towards. Sensor element m is at the
position ~xm = (xm, ym, zm), while r◦m , |~x◦ − ~xm| is the distance from the position
we steer towards to element m. The speed of sound is denoted c. The origin may
of course be chosen at will, for example at (x = 0, y = 0, z = 0). Then (1) becomes:

∆m = −
|~x◦ − ~xm|

c
= −

√

(x◦ − xm)2 + (y◦ − ym)2 + (z◦ − zm)2

c
. (2)

Our main task here will be to use delay-and-sum beamforming to estimate the
positions of the 3 sound sources in the room. This will be done through steering
of the receiver beam to a number of positions in the room, and calculating the
beamformer output for each of the positions. We will then assume that the sources
are located at positions which generate a high beamformer output.

The directivity of the array increases with increasing frequency. We will prefer to
do the source localization by selecting frequencies around f0 = 3 kHz, with a 20%
two-sided bandwidth. This may be done by use of the provided Matlab function
filter6db.

(a) Use the function [insignal, INSIGNAL, f] = filter6db(f0, relwidth,

fs, insignal) to filter all channels in the variable data. Name the result-
ing filtered data matrix data_filt. Plot the frequency spectrum of the first
channel data(1,:) as a function of frequency. Plot the frequency spectrum
of the data(1,:), filtered around 2 kHz, with 20% bandwidth. The quantities
you should plot as a function of frequency are thus:

• 20 · log10 |F {p1(t)} (f)|, and

• 20 · log10 |F {p1,B(t)} (f)|,

for p1(t) being the signal at channel one, and p1,B being the same signal but
band-pass filtered. Plot only within the frequency interval f ∈ [0, 4] kHz. Let
the dynamic range be from 0 to 60 dB. The axis adjustments may be done
by use of the command axis([0 4 0 60]). Make sure to scale the frequency
axis to kHz.
Note that you also need to have the provided helper function make_freq_axis

accessible.

4

(b) Test the provided function timeshift_signals, by plotting the signal at sen-
sor 1 as a function of time t, and within the same plot show this signal but
time-delayed by ∆t = ±1/4 s.

(c) Write a function that performs delay-and-sum focusing. After calculation of
the focusing delays ∆m within the function, all delays should be adjusted by
subtraction of the smallest delay to: ∆̂m = ∆m −min (∆m). Then apply ∆̂m

to each of the elements before output of the data from your function. [This
just corresponds to an adjustment of the phase center position, and does not
change the focusing point. Imagine for example that you delay all element
signals equally by one second after focusing: the focusing point will still be
the same.]

Your function should be named delaySum. It should have the following header:

function [data, delta_t] = delaySum(data, xm, ym, zm, x0, y0, z0, fs, c)

% Input

% -----

% data : Signals. Each row is data on a single channel

% xm, ym, zm : Vectors with x,y, and z positions of the sensors.

% Length must be the same as the number of rows in data

% x0, y0, z0 : scalars with x,y, and z position we want to steer to

% fs : sampling frequency [Hz]

% c : speed of sound [m/s]

%

% Output

% ------

% data : time-delayed signal matrix

% delta_t : vector with the applied time-delays for each sensor

Hint: The time-delay calculation part of your delaySum function could e.g.

be implemented through something like:
delta_t = -sqrt((xm-x0).ˆ2 + (ym-y0).ˆ2 + (zm -z0).ˆ2) / c;

This constructs a delay vector that is of the same dimension as the equally-
dimensioned input variables xm, ym, zm.

(d) Now we’re ready to try to localize some sources. This will be done by analysis
of the filtered data matrix data_filt around 3 kHz.

• We assume the sources to be located at z◦ = 0, within the region x◦ ∈
[−5, 5] m, y◦ ∈ [−5, 5] m.

• Generate a vector pos = -5:(1/2):5, and construct a grid of “focusing
test points” by use of [X0, Y0] = meshgrid(pos, pos);. The z position
of the sources is assumed to be z = 0, so you may construct the height
position vector as Z0 = 0 * X0. Depending on the efficiency of your
computer system, you might change 1/2 into a lower value without getting
a too long calculation time. The result shown in Fig. 1 employs a stepsize
of 1/5.

5

• In order to keep down the calculation time: do the processing based on
for example only the last 212 = 4096 samples of the data_filt matrix.
This may be done by applying e.g. data_filt_red = data_filt(:,

(end-4096+1):end).

• Then sweep your beam through all points described by X0, Y0, Z0, and
calculate the Power of the beamformer output at each point: P (~x◦) =
E

{

|z(t)|2
}

(~x◦).

• Finally visualize this focus-point-dependent P (~x◦) in dB by use of imagesc.
In order to make the maximum dB value to be = 0, normalize your P (~x◦)
by its maximum value before applying 20 log10 on its absolute value be-
fore plotting. Accompany your imagesc plot with a colorbar.
Adjust your x and y scales to be equal by applying axis equal; axis

tight. Adjust your coordinate system axis directions by typing axis xy.
Identify probable source location coordinates. You may get x, y coordi-
nates of S points on an imagesc plot by use of the command [a,b] =

ginput(S). What coordinates do you assume the 3 sources to be located
at?
Your plot should look something like the plot shown in Fig. 1. [However
in your report, please provide the plot in color so we know that you have
produced one yourself.]

Power P(xo) [dB]

x [mm]

y
[m

m
]

−5 0 5

−5

0

5 −30

−25

−20

−15

−10

−5

0

Figure 1: The beamformer output power as a function of steering position.
.

(e) Now you should focus the total un-filtered data onto your S identified source
locations ~x◦

s, s = 0, . . . , ~x◦

S−1
.

6

• Calculate the beamformer output zs(t) =
M−1
∑

m=0

y(t − ∆m(~x◦

s)) for each of

the S identified source locations ~x◦

s.

• Listen to each of the zs(t) by use of sound. Remember to normalize
each beamformer output in order to keep the amplitude within [−1, 1].
Describe what you hear from each source.

• Write a report including all plots, results and discussions.

Attach your Matlab code in an appendix.

• Deliver you assignment electronically as a single PDF file,

named using the convention:

Lastname_Firstname_Mand_2_INF5410.pdf

7

